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Two methods are presented for solving the problem of nonlinear viscous fluid 
flow in spiral channels of arbitrary transverse section in the Stokes approxi- 
mation, variational and iterational. 

Formulation of the Problem 

Let us consider the problem of finding the velocity profile being shaped during station- 
ary flow of a nonlinear viscous fluid in a spiral channel of arbitrary transverse section in 
a noninertial (Stokes) approximation. 

The urgency of the problem is based on the fact that the most effective method of inten- 
sifying the convective heat and mass transfer for media with high viscosity and quite defi- 
nite viscosity anomalies is the application of spiral ribbing of the channels [i]. 

Earlier the existence and uniqueness of the solution of the formulated problem was proved 
in [2]. It was simultaneously shown in [2] that independently of the shape of its transverse 
section a spiral channel possesses a one-parameter symmetry group, shifts along spiral lines. 

In this connection, we introduce a spiral coordinate system related to the cylindrical 
system by the relationships 

27I q~ = r, qZ = q~ . . . . .  z, qS = z, 
S 

V1 = G ,  V2 = rVr V3 = V~ q- ~ -  rI%. 
(i) 

In this case fixing ql and q2 yields a spiral line while the operator 8/8q 3 is the derivative 
in the direction of the spiral lines, i.e., the third spiral coordinate. The velocity com- 
ponents V I, V 2, V 3 in the spiral coordinate system introduced in this manner will be self- 
similar in the variable q3. ~ ,  

Then the system of motion and continuity equations describing this problem can be repre- 
sented by using vortex-stream function variables in the form 
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with the "adhesion" boundary condition on the channel wall and the second invariant of the 
strain rate tensor equal to 
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VARIATIONAL METHOD 

The functional of the action for the formulated problem is defined in [2] as 

- -  1 
F(V)= 2-S.[1" ~x*(12)do--2 

K 

and then is reduced to the form 

OP 
Oq 3 f.!~ (~r, n)dv, (6) 

- S OP 

a Oq a a 

when the self-similarity of the velocity vector relative to the spiral coordinate is taken 
into account, where it is proved in [3] that it is weakly continuous and has a lower bound, 
and Consequently, a unique stationary point in H. 

To assure the stability of the Variational solution, we represent the function realizing 
the extremum of the functional (7) (for each of the velocity components) in the form 

m 

Vj = ~.dA~f.. (8) 
! 

We use the e igenfunct ionsof  contiguous operators for the problem (2)- (4)  under consid- 
erat ion in the domain ~ as the complete and linearly independent system of coordinate func- 
tions fn" 

Let us examine two spiral channel shapes, a tube with a tape spiral insert and a coaxial 
channel with spiral ribbing of the annular gap. For the first construction (neglecting half 
the tape thickness, a semicircle in the transverse section) the eigenfunctions of the contig- 
uous (Poisson) operator have the form 

f. = Cc, A %, sin (kq~), 

where Ccr is selected from the condition 
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For the second construction (a rectangle in transverse section) 

1 

In -- (Rs - -  R1) 2 Jc 4 (~p~ - -  r 2 
k~ (ql__ R1) sin Px(q2--(Pl) " 

(R~ - -  R0 (%--(P0 

The coefficients of the expansion in (8) are found from the condition of minimum of the 
functional (7) by using the Ritz method 

aI~ dQ OP P~  OVz aF@i = S ~l~(&) aA'~ aq~- S J J - - ~ d ~  (n=l, 2 .. . . .  mj). (9) 
aA~ 2 ~ " 

After evaluation of the intergrands and appropriate manipulations the system (9) is 
written in the form of systems of nonlinear equations in the coefficients of the expansion 

m, C A~Onm + Ei, =0, j = l ,  2, 3, (10) 
I ~ Oq 3 

where 

q aA~ 

~nm(ql, q2) are the results of calculating the expressions in the square brackets in (9). 

A Kachanov calculational process [4] is used for the numerical realization of the varia- 
tional method, whereupon the system (i0) is linearized in the first stage of the calculation 
by conferring a certain value ~ = const on ~(12). In a first approximation AnJ and Vj are 
determined here. After evaluating (5) and the effective viscosity by means of a selected or 
given rheological equation, 8nm, AnJ, and Vj are again computed. Therefore, the system (i0) 
is linearized in each stage of the calculation, which is equivalent to freezing the coeffi- 
cients ~(I2) in (2)-(4). Solution of the linear system (10) in each stage of the calcula- 
tions is by the Gauss method, where repeated Gauss quadratures are used here to evaluate w 
Evidently, the Newtonian viscosity, usually ~0, is given as the first approximation of ~(I 2) 
independently of the rheological model. In the first stage of the calculations the profiles 
of the velocity components correspond to the Newtonian. If the sequence of solutions of the 
systems (i0) tend to a certain limit in ~(I 2) while the systems themselves tend to a limit 
in A nj in each stage of the calculations, then this is indeed the solution of the problem. 

ITERATION METHOD 

To construct an algorithm of pure iteration type, we represent all three equations of 
the system (2)-(4) that have approximately identical structure in the following form accord- 
ing to [5] 

a ,wk),i,k i, 
aq, i, aq I ) Oq 2 \ a#z ) 

(ii) 

where oji are functions of 12 and the coordinates in the general case [just functions of the 
coordinates ql and q2 for equation (3)], and W i is understood to be ~3 for (2), ~ for (3), 
and V 3 for (4). 

Each of the equations of the system (2)-(4) reduced to the form (ii) is solved individ- 
ually, where the Wj, W k (j, k ~ i) from the preceding stage of the calculations are used here 
to find the values~ As any other iteration approach to the solution of such nonlinear prob- 
lems, the algorithm proposed for the computation consists of an infinite number of steps of 
approximation to the desired solution. 

An important step in the construction of iteration structures of solutions, especially 
of nonlinear problems, is the selection or finding of the first approximation. The substitu- 
tion 
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OW~ OU ' 
~ , j = 1, 2, aq ~ = Oq ~ (12)  

is highly recommended in [6] for finding the first approximation when solving equations of 
the form (ii) and for the numerical realization of the problem of nonlinear viscous fluid 
flow in a cylindrical channel of arbitrary transverse section and would simultaneously 
permit an explicit solution to be obtained in the Newtonian case. 

In this situation, i.e., for a flow in a spiral channel of arbitrary transverse section, 
we will use the substitution (12) to find V a in a first approximation by means of (4) by con- 
sidering ~ = 0 and ~a = -(4~/AS)Va. 

Then the matrices of values of I2 are evaluated according to (5) and of ~(12) by using 
a theological model of a fluid. Substitution of the values of p(I=) into the equations of 
the system (2)-(4) reduced to the form (ii) permits freezing the coefficients of (ii) and 
solving them successively by known methods. 

We use the iteration method of variable directions (MVD) which has the following form 
for the problem under consideration 

where 

~ = A~Y ~+~/2 + A~Y ~ + f~/2, 

-r AIY  ~+~/~ + A~Y u+l + f~/2, 

(13)  

AIYiJ = (YiY-~k~u ' }"i.f (klfj + kli]+l) + Yi~+xka,j+x); 

kuj ---- O, 5 (o i (qL,, q~ ) + cq (q~, q~ )); 

A2YtJ = ~ (Y~-aik~u - -  Y u  (k,u + k2i+l~) -}- Yi+ljk~+lj); 
h2 

k,~j = 0, 5 (% (q[, q~--l) -~- if2 (q~, q~" )), 

f o r  t h e  n u m e r i c a l  r e a l i z a t i o n .  Each o f  t h e  e q u a t i o n s  o f  t h e  sy s t em (13)  i s  s o l v e d  by a s t a n -  
da rd  f a c t o r i z a t i o n  method ,  where  t h e  f a c t o r i z a t i o n  c o e f f i c i e n t s  f o r  t h e  f i r s t  e q u a t i o n  a c q u i r e  
the form 

Ai = k~u .1 ' hg , Bi = k S i + l ~ - .  Cf = Ai + Bi + .---~- , 
hg ' 

~2 + h~ t - u - *  " I t  J - - - , l  

and for the second equation 

Aj ku~ klij+~ Cj = Aj + Bj + 1 = h - - 7 - '  B j =  ' 

Y~ . 1 
= Y~J (k~ij + k~+lj) -[- Yt+llk~i+lj]. Fj t, /2 + + 

When formulating problems in the variables vortex-stream function, the question of the bound- 
ary conditions for these variables remains. We obta'in from the adhesion condition 

ar 

where �9 and n are the tangent and normal to the channel contour. 

(14) 
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Using the condition (14) and equation (2) of the initial system, by known reasoning [7] 
we obtain the conditions: 

for (3) 

for (4) 

V~lr = 0, ~lr = 0, ( i 5 )  

ql aq! A aq 1 (q9 2 aq ~ A aq 2 j r '  
(16) 

O~ I = 0. 
On Ir 

T h e r e f o r e ,  t he  s e t  o f  boundary c o n d i t i o n s  ( 1 4 ) - ( 1 5 )  pe rmi t s  comple te  f o r m u l a t i o n  of  t h i s  
problem in t he  v o r t e x - s t r e a m  f u n c t i o n  v a r i a b l e s .  

The i t e r a t i o n  pa r am e t e r s  ( f i c t i t i o u s  t ime)  ~z and ~2 a r e  s e l e c t e d  a c c o r d i n g  t o  [8] in 
such a manner t h a t  t h e  q u a n t i t y  o f  i n t e r n a l  i t e r a t i o n s  i s  minimal .  

A f t e r  the  e x t e r n a l  i t e r a t i o n s  w i n ( q i ,  q2) a r e  c a l c u l a t e d  in t he  second s t a g e  (n = 2) 
f o r  a l l  i t h e  m a t r i c e s  12 and ~( I  2) a re  aga in  e v a l u a t e d .  The p r o c e s s  i s  c o n t i n u e d  u n t i l  a 
g iven  de g re e  o f  r e l a t i v e  e r r o r  i s  a ch i eved .  

COMPARATIVE ANALYSIS OF THE METHODS AND RESULTS OF THE CALCULATIONS 

As has already been mentioned, a tube with a spiral tape insert and a coaxial channel 
with spiral ribbing of the gap were examined as specific spiral channel shapes. The functions 
used for the substitution (12) are presented in [6] for both shapes. 

The generalized Kutateladze-Khabakhpashevaya rheological equation [9] was used as the 
specific dependence ~(12) 

d9,  = -- 9,~d%, 

in the exponential form (for large n) 

~, = exp (--~,), 

9 ,  = ( 9 |  - -  r  - -  % ) ,  % = 0 (,~ - -  % ) / ( 9 ~  - -  %), r = 

(17) 

1 (18)  
~(&) 

The case of model fluid flow subject to (18) with the parameters % = 0.1981 (Pa='sec) -I, 
90 = 1.9 i/Pa-sec, 9~ = i/Pa.sec, T o = 0 for 8P/aq 3 = 60 m/m 3 was considered for both 
methods. The channel dimensions were: tube with tape insert R = 0.006 m, S = 0.08 m; co- 
axial spiral channel R I = 0.021 m, R= = 0.036 m, S = 0.08 m. 

Results of computations of the velocity fields in the tube with the tape spiral insert 
and in the coaxial spiral channel are presented in the figure. The velocity profiles obtained 
are identical for both methods. 

A comparative analysis of the two methods of computation showed that the purely iteration 
approach possesses a very much greater rate of convergence and smaller time expenditures per 
computation. 

Solution of the problem in the variational formulation for the flow conditions presented 
and the spiral channel dimensions required six iterations to reach a relative error of e = 
10 -4 in the effective viscosity for both channel shapes. The awkwardness of the computations 
of the system (i0) and the extremely poor convergence of calculations because of the presence 
of the integral sines should be noted. On the other hand, the traditional a priori represen- 
tation of the basis functions (8) in polynomial form considerably shortens the calculation 
process but is distinguished by poor stability, especially for domains possessing incomplete 
symmetry. Thus, for instance, for the considered flow examples and to assure a relative er- 
ror of e = 10 -4 in the expansion coefficients AnJ in (8), a minimal number of equations in 
the system (i0) of 27 in each flow velocity component would be required for the tube with the 
tape insert and 24 for the coaxial spiral channel. An increase in the computation accuracy 
to e = 10 -6 would respectively result in 42 and 36 equations in each velocity component. 

1115 



',~'
i-/ 

i 
\ 

,1 ~
," 

',:h
 

\ 
I 

t14
~,,

 
',o
li I 

-,,
~ 

{1 ~
 

t 
i 

<
,

~
o

 
o 

<, 
o,

.-
-~

'<
, 

2.
./
o"
 ~ 

I 
b 

d 

o
r
 

~
 

2.
;0

"5
 

~ 
I 

I 
t 

r 
t 

t 
I 

t 
t 

~ 
I 

qt
_R

t 
o 

q~
5 

0,
5o

 o
7~
 
Vy

R 
~,
o 

o,
s 

o 
0,
5 

~ 
o 

0,
25
 
o5
o 

o,
75
 

o 
o,
 zs
 

0,
50

 
07
5 
R~
-R
~ 

Fi
g.

 
i.
 

C
o
m
p
u
t
e
d
 
d
i
m
e
n
s
i
o
n
l
e
s
s
 
d
i
a
g
r
a
m
s
 
o
f
 
t
h
e
 
a
x
i
a
l
 
(
s
o
l
i
d
 
l
i
n
e
s
 
a,
 
c)

, 
c
i
r
c
u
m
f
e
r
e
n
t
i
a
l
 

(
d
a
s
h
e
s
 
a,
 

c)
 
a
n
d
 
r
a
d
i
a
l
 
(b
, 

d)
 
v
e
l
o
c
i
t
y
 
c
o
m
p
o
n
e
n
t
s
 
i
n
 
t
h
e
 
s
e
c
t
i
o
n
s
 
A
-
A
 
a
n
d
 
B-

-B
 (
r 

= 
R
/
3
)
 
o
f
 
t
h
e
 
t
u
b
e
 
w
i
t
h
 
t
a
p
e
 

i
n
s
e
r
t
 
(a
, 

b)
 
a
n
d
 
i
n
 
s
e
c
t
i
o
n
s
 
r 

= 
(R

I 
+ 

R
2
)
/
2
 
a
n
d
 
A-

-A
 o
f
 
t
h
e
 
c
o
a
x
i
a
l
 
c
h
a
n
n
e
l
 
w
i
t
h
 
s
p
i
r
a
l
 
r
i
b
b
i
n
g
 
(c
, 

d)
. 



Realization of the problem in a purely iterational formula for completely identical 
flow conditions would require (for the same computation accuracy E = I0 -") four external 
iterations in effective viscosity for both channel shapes and nine and five internal itera- 
tions (by the MVD method) for the tube with the tape insert and the coaxial spiral channel. 
An increase in the computation accuracy to ~ = i0 -6 would also result in just growth of the 
number of internal standard iterations to 12 and 6, respectively. 

Estimation of the influence of the rheological model parameters and of the hydrodynamic 
flow characteristics on the indices of the calculational iteration process was confirmed by 
deductions elucidated in [6]. 

NOTATION 

ql, q2, q3, running spiral coordinates; r, ~, z, running cylindrical coordinates; S, 
step of the spiral pitch; Vr, V~, V2, radial, circumferential, and axial velocity components; 
VI, V2, V 3, velocity components in the spiral coordinate system; V, velocity vector; ~, ef- 
fective viscosity; 12 = 2 tr(D2), second invariant of the strain rate tensor; ~, stream func- 
tion introduced by the relationships V I = (I/ql)(8~/3q2), V 2 = -(I/ql)(8~/Sql); p, density; 
m3, third component in the spiral coordinate system; A = i + (2~/S)2(qi)2; D, strain rate 
tensor; ~, domain with boundary ~; F(V), the functional to be minimized; K, volume of the 
spiral channel included between sections orthogonal to the channel axis and at a distance S 
from each other; AnJ, coefficients of the velocity component expansion in the system of basis 
functions fn; H, Hilbert space of solenoidal vector-functions with spiral symmetry condition; 
fn, a complete and linearly independent system of coordinate functions used as basis func- 
tions; Jk, Bessel functions; ~cr, root of the Bessel functions; R, tube radius; RI, R2, in- 
ternal and external radii of the coaxial channel; ~,,~, values of the polar angle corre- 
sponding to the thickness of the spiral ribbing in the coaxial channel; ~0, greatest Newton- 
Jan viscosity (as T ~ 0); T, intensity of the tangential shear stress; B = grad (D, D); r 
fluid yield; ~0,~ , yield as �9 + 0 and �9 § ~; 8, ~0, measure and limit of the structural sta- 
bility of the fluid; ~*, primitive of ~(12) such that ~*(0) = 0; n, m, numeral and number of 
series of desired function expansions; U, an auxiliary function that is a solution of the 
Dirichlet problem for the Poisson equation; Y, difference analog of the desired function; A, 
difference analog of the differential equation operators; ~l, T2, iteration parameters (fic- 
titious time); hl, h2, steps of the difference mesh in the ql and q2 directions; A, B, C, F, 
coefficients of the factorization method; ~ variable coefficients of an elliptical equa- 
tion that is functions of 12 and the coordinates; E, relative error, K = 2~/S. Subscripts: 
j, i, numbers of the mesh matrix nodes; n, number of the external iteration, and k, number 
of the iteration of the method of variable directions. 
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